

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

INTRODUCTION TO ADVANCED MATHEMATICS, C1

Practice Paper C1-A

Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You are **not** permitted to use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

4

Section A (36 marks)

1 Find the equation of the line which passes through (1, 3) and (4, 9). [2]

2 Find the range of values of x for which
$$x^2 - 5x + 6 \le 0$$
. [3]

3 Write $(\sqrt{3} - \sqrt{2})^2$ in the form $a + b\sqrt{6}$ where a and b are integers to be determined. [4]

The graph shows a function y = f(x).

On separate graphs, sketch the graphs of the following functions:

(i)
$$y = f(x) + 1$$
, (ii) $y = f(x+1)$. [4]

5 Make *u* the subject of the formula

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \tag{4}$$

- 6 The equation of a circle is $x^2 + y^2 2x 8 = 0$. Find the centre and radius of the circle. [4]
- 7 Show that (x 2) is a factor of $f(x) = x^3 x^2 4x + 4$. Hence solve the equation $x^3 - x^2 - 4x + 4 = 0$. [5]

PMT

8 Find the points where the line
$$y = 2x - 3$$
 cuts the curve $y = x^2 - 4x + 5$. [5]

9 (i) Simplify
$$\frac{2^6}{8^{\frac{2^1}{2}} \times 2^{\frac{1}{2}}}$$
 [3]

1

(ii) Solve the equation
$$x^{-\frac{1}{3}} = 8$$
. [2]

Section B (36 marks)

10

In Fig.10, A has coordinates (1, 1) and C has coordinates (3, 5). M is the mid-point of AC. The line *l* is perpendicular to AC.

(i)	Find the coordinates of M.	
	Hence find the equation of <i>l</i> .	[5]
(ii)	The point B has coordinates (-2, 5). Show that B lies on the line l . Find the coordinates of the point D such that ABCD is a rhombus.	[4]
(iii)	Find the lengths MC and MB. Hence calculate the area of the rhombus ABCD.	[3]

- **11** (i) Multiply out (x p) (x q). [1]
 - (ii) You are given that $p = 2 + \sqrt{3}$ and $q = 2 \sqrt{3}$ are the roots of a quadratic equation. Find p + q and pq and hence find the quadratic equation with roots x = p and x = q. [4]
 - (iii) Solve the quadratic equation $x^2 + 5x 7 = 0$ giving the roots exactly. [3]
 - (iv) Show that x = 1 is the only root of the equation $x^3 + 2x 3 = 0$. [3]
 - (v) A quadratic equation $x^2 + rx + s = 0$, where *r* and *s* are integers, has two roots. One root is $x = 3 + \sqrt{5}$. Without finding *r* or *s*, write down the other root. [1]
- **12** (i) Expand $(1 + 2x)^6$, simplifying all the terms. [3]
 - (ii) Hence find an expression for $f(x) = (1 + 2x)^6 + (1 2x)^6$ in its simplest form. [3]
 - (iii) Substituting x = 0.01 into the first two terms of f(x) gives an approximate value, z for $1.02^6 + 0.98^6$. Find z.

By considering the value of the third term, comment on the accuracy of z as an approximation for $1.02^6 + 0.98^6$. [6]