MEI STRUCTURED MATHEMATICS

INTRODUCTION TO ADVANCED MATHEMATICS, C1

Practice Paper C1-A

Additional materials: Answer booklet/paper
Graph paper
MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer all the questions.
- You are not permitted to use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is $\mathbf{7 2}$.

Section A (36 marks)

1 Find the equation of the line which passes through $(1,3)$ and $(4,9)$.

2 Find the range of values of x for which $x^{2}-5 x+6 \leq 0$.

3 Write $(\sqrt{3}-\sqrt{2})^{2}$ in the form $a+b \sqrt{6}$ where a and b are integers to be determined.

4

The graph shows a function $y=\mathrm{f}(x)$.
On separate graphs, sketch the graphs of the following functions:
(i) $y=\mathrm{f}(x)+1$,
(ii) $y=\mathrm{f}(x+1)$.

5 Make u the subject of the formula

$$
\frac{1}{v}-\frac{1}{u}=\frac{1}{f}
$$

6 The equation of a circle is $x^{2}+y^{2}-2 x-8=0$.
Find the centre and radius of the circle.

7 Show that $(x-2)$ is a factor of $\mathrm{f}(x)=x^{3}-x^{2}-4 x+4$.
Hence solve the equation $x^{3}-x^{2}-4 x+4=0$.

8 Find the points where the line $y=2 x-3$ cuts the curve $y=x^{2}-4 x+5$.

9 (i) Simplify $\frac{2^{6}}{8^{2 \frac{1}{2}} \times 2^{-\frac{1}{2}}}$
(ii) Solve the equation $x^{-\frac{1}{3}}=8$.

Section B (36 marks)

10

Fig. 10
In Fig.10, A has coordinates $(1,1)$ and C has coordinates $(3,5) . \mathrm{M}$ is the mid-point of AC . The line l is perpendicular to AC.
(i) Find the coordinates of M .

Hence find the equation of l.
(ii) The point B has coordinates $(-2,5)$.

Show that B lies on the line l.
Find the coordinates of the point D such that ABCD is a rhombus.
(iii) Find the lengths MC and MB.

Hence calculate the area of the rhombus ABCD .

11 (i) Multiply out $(x-p)(x-q)$.
(ii) You are given that $p=2+\sqrt{3}$ and $q=2-\sqrt{3}$ are the roots of a quadratic equation. Find $p+q$ and $p q$ and hence find the quadratic equation with roots $x=p$ and $x=q$.
(iii) Solve the quadratic equation $x^{2}+5 x-7=0$ giving the roots exactly.
(iv) Show that $x=1$ is the only root of the equation $x^{3}+2 x-3=0$.
(v) A quadratic equation $x^{2}+r x+s=0$, where r and s are integers, has two roots. One root is $x=3+\sqrt{5}$. Without finding r or s, write down the other root.

12 (i) Expand $(1+2 x)^{6}$, simplifying all the terms.
(ii) Hence find an expression for $\mathrm{f}(x)=(1+2 x)^{6}+(1-2 x)^{6}$ in its simplest form.
(iii) Substituting $x=0.01$ into the first two terms of $\mathrm{f}(x)$ gives an approximate value, z for $1.02^{6}+0.98^{6}$. Find z.

By considering the value of the third term, comment on the accuracy of z as an approximation for $1.02^{6}+0.98^{6}$.

